Advanced Water Products & Services
7280 Caswell Street
North Syracuse, NY 13212
(315) 451-2233 phone
(315) 458-0526 FAX
For more information click here

Copyright © 2005-2006 Environmental Technical Group, Inc.
www.etgonline.com
HOME  -  RESIDENTIAL  -  COMMERCIAL  -  INSPECTIONS  -  CONTACT  -  EMPLOYMENT  -  STAFF  -  TESTING  -  
TREATMENT  -  WATER PROBLEMS  -  ABOUT  -  SERVICE  -  LINKS  -  FRANCHISING
Advanced Water
IRON AND MANGANESE
IN DRINKING WATER
Iron and manganese are non-hazardous elements that can be a nuisance in a water supply. Iron
and manganese are chemically similar and cause similar problems. Iron is the most frequent of the
two contaminants in water supplies; manganese is typically found in iron-bearing water.

Sources of Iron and Manganese in Drinking Water
Iron and manganese are common metallic elements found in the earth's crust. Water percolating
through soil and rock can dissolve minerals containing iron and manganese and hold them in
solution. Occasionally, iron pipes also may be a source of iron in water.

Indications of Iron and Manganese
In deep wells, where oxygen content is low, the iron/manganese-bearing water is clear and
colorless (the iron and manganese are dissolved). Water from the tap may be clear, but when
exposed to air, iron and manganese are oxidized and change from colorless, dissolved forms to
colored, solid forms.

Oxidation of dissolved iron particles in water changes the iron to white, then yellow and finally to
red-brown solid particles that settle out of the water. Iron that does not form particles large enough
to settle out and that remains suspended (colloidal iron) leaves the water with a red tint.
Manganese usually is dissolved in water, although some shallow wells contain colloidal manganese
(black tint). These sediments are responsible for the staining properties of water containing high
concentrations of iron and manganese. These precipitates or sediments may be severe enough to
plug water pipes.

Iron and manganese can affect the flavor and color of food and water. They may react with tannins
in coffee, tea and some alcoholic beverages to produce a black sludge, which affects both taste
and appearance. Manganese is objectionable in water even when present in smaller concentrations
than iron.

Iron will cause reddish-brown staining of laundry, porcelain, dishes, utensils and even glassware.
Manganese acts in a similar way but causes a brownish-black stain. Soaps and detergents do not
remove these stains, and use of chlorine bleach and alkaline builders (such as sodium and
carbonate) may intensify the stains.

Iron and manganese deposits will build up in pipelines, pressure tanks, water heaters and water
softeners. This reduces the available quantity and pressure of the water supply. Iron and
manganese accumulations become an economic problem when water supply or water softening
equipment must be replaced. There also are associated increases in energy costs from pumping
water through constricted pipes or heating water with heating rods coated with iron or manganese
mineral deposits.

A problem that frequently results from iron or manganese in water is iron or manganese bacteria.
These nonpathogenic (not health threatening) bacteria occur in soil, shallow aquifers and some
surface waters. The bacteria feed on iron and manganese in water. These bacteria form red-brown
(iron) or black-brown (manganese) slime in toilet tanks and can clog water systems.

Testing
The method used to test water for iron and manganese depends on the form of the element. If
water is clear when first drawn but red or black particles appear after the water sits in a glass,
dissolved (ferrous) iron/manganese is present. If the water has a red tint with particles so small they
cannot be detected nor do they settle out after a time, colloidal (ferric) iron is the problem.

Typically, laboratory tests are needed only to quantify the extent of iron and manganese
contamination, but testing of additional water parameters such as pH, silica content, oxygen
content, hardness and sulfur may be necessary to determine the most appropriate water treatment
system.

Interpreting Test Results
The Environmental Protection Agency (EPA) standards for drinking water fall into two categories ---
Primary Standards and Secondary Standards. Primary Standards are based on health
considerations and are designed to protect people from three classes of pollutants: pathogens,
radioactive elements and toxic chemicals.
Secondary Standards are based on taste, odor, color, corrosivity, foaming and staining properties
of water. Iron and manganese are both classified under the Secondary Maximum Contaminant
Level (SMCL) standards.

The SMCL for iron in drinking water is 0.3 milligrams per liter (mg/l), sometimes expressed as 0.3
parts per million (ppm), and 0.05 mg/l (ppm) for manganese. Water with less than these
concentrations should not have an unpleasant taste, odor, appearance or side effect caused by a
secondary contaminant.

Options
If excessive iron or manganese is present in your water supply, you have two basic options -- obtain
an alternate water supply or use some type of treatment to remove the impurity.

The need for an alternate water supply or impurity removal should be established before making an
investment in treatment equipment or an alternate supply. Base the decision on a water analysis by
a reputable laboratory.

It may be possible to obtain a satisfactory alternate water supply by drilling a new well in a different
location or a deeper well in a different aquifer.

Removal
Several methods of removing iron and manganese from water are available. The most appropriate
method depends on many factors, including the concentration and form of iron/manganese in the
water, if iron or manganese bacteria are present, and how much water you need to treat.

Generally speaking, there are five basic methods for treating water containing these contaminants.
They are: (1) phosphate compounds; (2) ion exchange water softeners; (3) oxidizing filters; (4)
aeration (pressure type) followed by filtration; and (5) chemical oxidation followed by filtration. Table
I summarizes iron and manganese treatment options.

These treatment techniques are effective in water that has an almost neutral pH (approximately
7.0). The phosphate compound treatment is an exception and is effective in the pH range of 5.0 to
8.0. Exceptions are noted for manganese removal.

Phosphate treatment
Low levels of dissolved iron and manganese at combined concentrations up to 3 mg/l can be
remedied using phosphate compound treatment. Phosphate compounds are a family of chemicals
that can surround minerals and keep them in solution. Phosphate compounds injected into the
water system can stabilize and disperse dissolved iron at this level. As a result, the iron and
manganese are not available to react with oxygen and separate from solution.

The phosphate compounds must be introduced into the water at a point where the iron is still
dissolved in order to maintain water clarity and prevent possible iron staining. This should be
before the pressure tank and as close to the well discharge point as possible.

Phosphate compound treatment is a relatively inexpensive way to treat water for low levels of iron
and manganese. Since phosphate compounds do not actually remove iron, water treated with these
chemicals will retain a metallic taste. In addition, too great a concentration of phosphate compounds
will make water feel slippery.

Phosphate compounds are not stable at high temperatures. If phosphate compound-treated water
is heated (for example, in a water heater or boiled water), the phosphates will break down and
release iron and manganese. The released iron and manganese will then react with oxygen and
precipitate.

Adding phosphate compounds is not recommended where the use of phosphate in most cleaning
products is banned. Phosphate, from any source, contributes to excess nutrient content in surface
water.

Ion exchange water softener
Low to moderate levels of dissolved iron, at less than 5 mg/l concentrations, usually can be
removed using an ion exchange water softener. Be sure to check the manufacturer's maximum iron
removal level recommendations before you purchase a unit. Capacities for treating dissolved iron
typically can range from 1 to 5 mg/l. Oxidized iron or levels of dissolved iron exceeding the
manufacturer's recommendations will cause a softener to become plugged.

The principle is the same as that used to remove the hardness minerals, calcium and magnesium;
i.e., iron in the untreated water is exchanged with sodium on the ion exchange medium. Iron is
flushed from the softener medium by backwashing (forcing sodium-rich water back through the
device). This process adds sodium to the resin medium, and the iron is carried away in the waste
water.

Since iron removal reduces the softening capacity of the unit, the softener will have to be
recharged more often. The manufacturer of the softener medium is able to make recommendations
concerning the appropriate material to use for a particular concentration of iron. Some
manufacturers recommend adding a "bed cleaning" chemical with each backwashing to prevent
clogging.

Not all water softeners are able to remove iron from water. The manufacturer's specifications
should indicate whether or not the equipment is appropriate for iron removal.

Water softeners add sodium to the water, a health concern for people on sodium-restricted diets.
Consider installing a separate faucet to provide unsoftened water for cooking and drinking.

Oxidizing filter
An oxidizing filter treatment system is an option for moderate levels of dissolved iron and
manganese at combined concentrations up to 15 mg/l. The filter material is usually natural
manganese greensand or manufactured zeolite coated with manganese oxide, which adsorbs
dissolved iron and manganese. Synthetic zeolite requires less backwash water and softens the
water as it removes iron and manganese. The system must be selected and operated based on the
amount of dissolved oxygen. Dissolved oxygen content can be determined by field test kits, some
water treatment companies or in a laboratory.

Aeration followed by filtration
High levels of dissolved iron and manganese at combined concentrations up to 25 mg/l can be
oxidized to a solid form by aeration (mixing with air). For domestic water processing, the
"pressure-type aerator" often is used.

In this system, air is sucked in and mixed with the passing stream of water. This air-saturated water
then enters the precipitator/aerator vessel where air separates from the water. From this point, the
water flows through a filter where various filter media are used to screen out oxidized particles of
iron, manganese and some carbonate or sulfate.

The most important maintenance step involved in operation is periodic backwashing of the filter.
Manganese oxidation is slower than for iron and requires greater quantities of oxygen. Aeration is
not recommended for water containing organic complexes of iron/manganese or iron/manganese
bacteria that will clog the aspirator and filter.

Chemical oxidation followed by filtration
High levels of dissolved or oxidized iron and manganese greater than 10 mg/l can be treated by
chemical oxidation, using an oxidizing chemical such as chlorine, followed by a sand trap filter to
remove the precipitated material. Iron or manganese also can be oxidized from the dissolved to
solid form by adding potassium permanganate or hydrogen peroxide to untreated water. This
treatment is particularly valuable when iron is combined with organic matter or when iron bacteria is
present.

The oxidizing chemical is put into the water by a small feed pump that operates when the well pump
operates. This may be done in the well, but typically is done just before the water enters a storage
tank. A retention time of at least 20 minutes is required to allow oxidation to take place. The
resulting solid particles then must be filtered. When large concentrations of iron are present, a
flushing sand filter may be needed for the filtering process.

If organic-complexed or colloidal iron/manganese is present in untreated water, a longer contact
time and higher concentrations of chemicals are necessary for oxidation to take place. Adding
aluminum sulfate (alum) improves filtration by causing larger iron/manganese particles to form.

When chlorine is used as the oxidizing agent, excess chlorine remains in treated water. If the
particle filter is made of calcite, sand, anthracite or aluminum silicate, a minimum quantity of
chlorine should be used to avoid the unpleasant taste that results from excess chlorine. An
activated carbon filter can be used to remove excess chlorine and small quantities of solid
iron/manganese particles.

Any filtration material requires frequent and regular backwashing or replacement to eliminate the
solid iron/manganese particles. Some units have an automatic backwash cycle to handle this task.

The ideal pH range for chlorine bleach to oxidize iron is 6.5 to 7.5. Chlorination is not the method of
choice for high manganese levels since a pH greater than 9.5 is required for complete oxidation.
Potassium permanganate will effectively oxidize manganese at pH values above 7.5 and is more
effective than chlorine oxidation of organic iron if that is a problem.

Potassium permanganate is poisonous and a skin irritant. There must be no excess potassium
permanganate in treated water and the concentrated chemical must be stored in its original
container away from children and animals. Careful calibration, maintenance and monitoring are
required when potassium permanganate is used as an oxidizing agent.

Plumbing corrosion
Corroded pipes and equipment may cause reddish-brown particles in the water that, when drawn
from the tap, will settle out as the water stands. This can indicate oxidized iron or, in some cases, it
may only be iron corrosion particles. Raising the water's pH and using a sediment filter is the
simplest solution to this problem.

Iron and manganese bacteria
The most common approach to control of iron and manganese bacteria is shock chlorination.
Shock chlorination procedures are described
here.  It is almost impossible to kill all the iron and
manganese bacteria in your system. They will grow back eventually so be prepared to repeat the
treatment from time to time.

If bacteria regrowth is rapid, repeated shock chlorination becomes time consuming. Continuous
application of low levels of chlorine may be less work and more effective. An automatic liquid
chlorine injector pump or a dispenser that drops chlorine pellets into the well are common choices.

Chlorine rapidly changes dissolved iron into oxidized (colored) iron that will precipitate. A filter may
be needed to remove oxidized iron if continuous chlorination is used to control iron bacteria.

Multistage treatment
If the water has high levels of iron and manganese and they are both the dissolved and solid forms,
a multistage treatment operation is necessary. For example, a troublesome supply could be
chlorinated to oxidize dissolved iron and kill iron bacteria, and filtered through a mechanical device
to remove particles. This can be followed by activated carbon filtration to remove excess chlorine
and a water softener for hardness control as well as removal of any residual, dissolved iron or
manganese.
Often hydrogen sulfide, iron and manganese contaminants can be removed using the same
treatment.

Summary
Iron and manganese are common water contaminants that are not considered health hazards.
Their presence in water results in staining as well as offensive tastes and appearances. Treatment
of these elements depends on the form in which they occur in the untreated water. Therefore,
accurate testing is important before considering options and/or selecting treatment equipment.  
Often the treatment for iron and manganese is the same for hydrogen sulfide, allowing removal of
all three contaminants in one process.